Background to ILike

A general framework, which covers many applications, is that we have a latent (unobserved) process
X, whose distribution depends on some parameters of interest #. We do not observe X itself, but instead
data Y that contains partial information about X. Note that in some applications X may have a spe-
cific meaning (e.g. the genealogy of a sample of chromosomes), whilst in others it may be a modelling
construct (e.g. the allocation of data to components in a mixture model) introduced to help with the anal-
ysis. This framework includes so-called missing-data models, state-space models, hierarchical models
and latent-variable models amongst others. Note that the ideas below can apply more generally — and we
are focussing on this framework just to help make the ideas concrete. It is simple to define the likelihood
for such models

p(y10) = / p(yx, O)p(x/6)dx, 0

however, the challenge comes from the fact that calculating the required integral is often not possible
analytically. Inference is performed either by maximising the likelihood p(y|6) or within the Bayesian
paradigm where a prior p(6) is introduced and the aim is then to calculate the posterior distribution
p(0ly) < p(0)p(y|0). I-Like research is driven by recent developments in 6 areas:

(B1) Pseudo marginal computations and particle MCMC. In many applications, whilst we cannot
calculate p(y|6), we can obtain Monte Carlo estimates of it: for example one can approximate (1) through

importance sampling
N
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where x() are drawn from ¢(-|y, #). A key question is how we can use such estimates within a Bayesian
approach to estimating ¢. One approach is to take a standard MCMC algorithm for sampling from
p(fly). Such an algorithm will involve repeatedly proposing new values of 6 to move to, and then
accepting these with an appropriate probability such that the ensuing Markov chain has p(f]y) as its
stationary distribution. The problem with implementing this is that the acceptance probability depends
on the intractable likelihood p(y|#). A naive way to proceed would replace the p(y|#)s by Monte Carlo
estimates. Intuitively we would expect such an approach to lead to an MCMC algorithm with the wrong
stationary distribution, but may hope that if the Monte Carlo estimates are accurate then this wrong
stationary distribution would be close to p(f|y) as N increases. Remarkably, [1] have shown that, if
implemented in the correct way, such an approach is not approximate in that the stationary distribution of
the MCMC algorithm is still p(f|y). Whilst the variance of the Monte Carlo estimator of the likelihood,
controlled by N above, does not affect validity of the resulting MCMC algorithm, it does affect its mixing
properties.

This type of idea has been shown to be particularly useful in the context of inference in state-space
models. Particle MCMC [2] gives a way of combining existing Monte Carlo methods for state-space
models, namely particle filters, with MCMC. At its simplest it involves running an MCMC algorithm that
targets p(f]y), but using the particle filter to produce estimates of p(y|f) that are used within the accept-
reject step of the MCMC algorithm. More complicated and efficient versions, that target p(6, x|y), also
exist. These ideas are related to the pseudo-marginal approach, and again have the property that whilst
the likelihood is replaced by an estimate, the resulting MCMC algorithm is still exact (in that it has the
correct target distribution). It has been shown that particle MCMC can be substantially more efficient
than standard MCMC algorithms.

(B2) Likelihood-free methods. So called likelihood-free methods are actually likelihood-based methods
for inference, but methods where the need to calculate a likelihood is replaced through the use of simu-



lation from the underlying model. Simply put, the basic idea is that we can approximate the likelihood
for a given parameter value by computing the proportion of data sets simulated from the model with that
parameter value that are similar to the observed data. One popular approach is Approximate Bayesian
Computation (ABC) [3]. Here “similar to” is defined in terms of appropriately chosen summaries of the
data, S(-), and some kernel K (-, ) that measures the discrepancy between sets of summaries. Formally
this leads to an approximation to the likelihood which can be defined as

paBC(YI6) = / K (S(y), 5(u))p(ul6)du. 3)

This in turn leads to an approximate posterior pogc (0|y) o p(6)paApc(y|¢). The advantage of using this
approximation stems from the fact that it is possible to sample from p g (f|y) using only the ability
to simulate new data sets u from p(u|f) [4]. Alternative likelihood-free approaches include Indirect
Inference [5], and simulated likelihood methods [6] amongst others. The popularity of these methods
is due to their efficiency in complex-model situations where simulation is straightforward, where often
there are no other likelihood-based options for inference. Furthermore they are easy to adapt to a range
of models, as only the simulation algorithm needs to be changed.

(B3) Composite and pseudo likelihoods. A pragmatic approach to inference is often to use an approx-
imate likelihood. In many cases these can be viewed in terms of the likelihood for an approximation to
the model of interest, such as the PAC likelihood [7]; or based on approximation to the likelihood, such
as via truncating a Taylor-expansion as in the INLA method [8]. A key open question is how to evaluate
the accuracy of the approximations and the effect this has on inferences. Alternatively there are generic
approximate likelihood methods — perhaps the most general and relevant for analysing complex models
and large data being composite likelihood. This approach creates a log-likelihood as a weighted sum of
the log-likelihoods for different subsets of the data. For example, fory = (1, ..., y,) we could consider
all individual data points, and all pairs of data points [9]

n n i—1
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Theory exists which gives conditions under which maximising such a composite likelihood will lead to a
consistent estimator, and also expressions for the asymptotic variance of this estimator. One motivation
for using composite likelihoods is that they can give robust estimates: as correct model specification is
needed only for the subsets used, and thus the results are not affected by any assumptions about higher
dependencies in the data: so the above composite likelihood (4) only requires modelling the marginal
and pairwise distributions, and does not impose any assumptions about the further dependence among,
say, triples of data.

(B4) Simulation and inference for intractable models. Many models of interest are intractable: often
because the underlying latent process needed to define a tractable distribution p(y|x) is infinite dimen-
sional. Two important examples are diffusion processes, where x is the sample path of the diffusions, and
Dirichlet process models, where x describes the weights and parameters of the infinitely many classes
in the model. It seems inevitable that for such models we need to resort to approximations, where the
infinite-dimensional x is replaced by a finite-dimension approximation. For the diffusion example, such
an x may be the value of the path at a fixed grid of time-points; for the Dirichlet process model, these are
often defined in terms of truncating the number of classes. However, for many such models, simulation
and inference are possible without resorting to approximation. The key idea underlying these methods is
that it is possible to replace x by a finite, but random dimensional, object, U say, in such a way that

p(ylx) = E(p(y|U)),
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where p(y|U) is tractable. For Dirichlet process models U is defined in terms of a random truncation
[10]; for diffusions, such a U consists of the value of the path a random number of randomly chosen
time-points [11, 12]. Whilst the initial work on diffusion had limited applicability, recent work has
developed generalisations (based around continuous-time extensions of sequential importance sampling)
which enable such ideas to be applied to most continuous-time Markov process models. In some cases,
these methods give us a way of simulating an event of a certain probability, p, even when we cannot
calculate p. As a simple example, if X is the diffusion satisfying SDE

dXt = Oé(Xt)dt + dBt y XO =0

on time interval [0, 7], with corresponding probability law P then under weak regularity conditions, the
Radon-Nikodym derivative with respect to Wiener measure W is given by

% — G(X) = exp {/OT (X, )X, — %/OT a(XS)st} |

Whilst we cannot calculate G(X), [11] show how we can simulate from an event of probability p =
K,G(X) for some known constant K; < 1. However, within an MCMC algorithm the acceptance
probability will be a function of this unknown probability p. If we can simulate events with probability p,
can we use such simulations to implement an appropriate MCMC algorithm? This is a classical problem
in computational probability, termed the Bernoulli factory problem. One example is: given an ability to
simulate from events of probability p we wish to construct events of probability 2p. Whilst the existence
of an algorithm for doing this was established in [13] the first practical algorithm of this type was recently
developed in [14] and exploits the structure of analytic functions in a simulation context. There are
prospects of being able to generalise this to the case of events of the probability f(p) for suitably regular
f, and further to the transformation of entire random variables.

(BS) Adaptive Monte Carlo. The implementation of the most popular and flexible Monte Carlo methods
currently used requires the user to make a significant number of choices. These choices are known to
be crucial in order to ensure good performance, traditionally measured in terms of the variability of the
estimators derived from samples generated by the procedure. In the context of Markov chain Monte
Carlo algorithms the choice of the proposal distribution is key to the performance of the procedure. For
example it is well known that the distribution of the increments of a random walk based Metropolis-
Hastings algorithm should capture the dependence structure and scale heterogeneity of the probability
distribution to be explored. In general an MCMC algorithm is parameterised by some parameter v € I’
for some set I' and the user is required to choose among a family of MCMC transition probabilities
{P,,y € I'} in order to design an efficient algorithm. The optimal parameter is usually unknown a
priori. Adaptive MCMC [15] algorithms aim to automate the choice of v by using the history of the
chain. Implementing this is non-trivial, as most methods of adaptation violate the Markov property, and
we need to ensure the resulting adaptive MCMC algorithm still has the correct stationary distribution.
There are two key ingredients to these algorithms: the specification of an optimality criterion and the
design of efficient optimisation procedures. Well known theoretical criteria are the speed of convergence
and the asymptotic variance of ergodic averages, which may however be difficult to optimize practically.
Instead simpler and more tractable proxies have been proposed, such as the acceptance probability at
stationarity for random walk or Langevin diffusion based Metropolis-Hastings algorithms. It has been
shown that such criteria can be efficiently optimized by MCMC algorithms which iteratively improve
their performance by learning from past samples. Key to the validity and efficiency of these algorithms
is the updating rule for the parameter to be optimized, and in particular the central notion of vanishing
adaptation. This important property allows one to recover asymptotically the correct ergodicity properties
lost by the introduction of the learning mechanism above and required for steady state optimality criteria.
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(B6) Modern many-core computer architecture. The 20th Century saw single-threaded computational
power increase exponentially. However, as we reach the limit of single processing speed manufacturers
are looking towards many-core architectures: it is possible to provide more processing power by putting
more cores onto a single die. The result of this trend is that computational algorithms which take ad-
vantage of multiple threads can see significant linear speedup with the number of cores available. For
concreteness we will describe just one example of many-core architectures, Graphical processing units
(GPUs). These are specialized processors with dedicated memory that conventionally perform floating
point operations required for rendering graphics. In response to commercial demand for real-time graph-
ics rendering, the current generation of GPUs have evolved into many-core processors that are specifically
designed to perform data-parallel computation. The main difference between GPUs and central process-
ing units (CPUs) is that GPUs devote proportionally more transistors to arithmetic logic units and less
to caches and flow control. Moreover, GPUs have high-speed memory access with very low latency and
very high bandwidth. They are dedicated and local which is important for private data security. This has
led us as well as others to explore their potential as computing devices for statistical computation to good
effect [16, 17]. Algorithms suited to many-core GPU simulation will exploit data-parallel computation.
This is a computation that has been parallelized by distributing the data amongst computing nodes. It can
be contrasted with a task-parallel computation, in which the distribution of computing tasks is empha-
sized. One framework that is used to accomplish data-parallelism is “’single instruction, multiple data”
(SIMD), in which multiple processors execute the same instructions on different data. In general, if a
computing task is well-suited to SIMD parallelization then it will be well-suited to GPU computation.
In particular, data-parallel computations where the ratio of arithmetic operations to memory operations
is high are able to attain maximum performance from a GPU, as the volume of very fast arithmetic in-
struction can ‘hide’ the relatively slow memory accesses. Many standard methods, such as MCMC or
sequential Monte Carlo, are not naturally suited to implementation on GPUs or other multi-core architec-
tures. To have maximum impact, next generation statistical algorithms will need to exploit the structure
and respect the constraints of multi-core architectures.
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