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Monte Carlo...

Assume that we want to estimate

I (f ) := Eπ(f ) =
ˆ

X
f (x)π (x) dx ,

where
π is a probability distribution defined on a space X ⊂ Rnx ,
f is a function X→ Rnf , such that I (|f |) < ∞.

Calculating I (f ) analytically might be impossible: one resorts to numerical
approximations
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Monte Carlo...

Exploit the law(s) of large numbers to estimate Eπ(f ) with iid
samples from π with

ÎN (f ) =
1
N

N

∑
i=1

f (Xi )

It is rarely the case that such iid samples can be obtained in practice,
One resorts to iterative methods (Sequential Monte Carlo methods,
Markov chain Monte Carlo methods) which depend on tuning
parameters.
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Principle of MCMC

A rather generic technique of producing such samples is known as
Markov chain Monte Carlo (MCMC).

It consists of constructing an ergodic Markov chain (MC) {Xi}
(i = 1, 2, . . .) with invariant distribution π.

And compute the estimator

ÎN (f ) =
1
N

N

∑
i=1

f (Xi ) .
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Metropolis-Hastings

Most, if not all MCMC algorithms, rely on the Metropolis-Hastings
(MH) algorithm.

It requires the definition of a family of proposal distribution q(x , ·) for
x ∈ X.
It proceeds as follows at iteration i + 1, given Xi = x :

1 Propose a transition y ∼ q(x , ·).
2 Calculate the acceptance probability

α(x , y) = 1∧ π(y)q(y , x)
π(x)q(x , y)

.

1 Xi+1 = y with probability α(x , y)
2 Otherwise, Xi+1 = x .
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The goldylocks paradigm

The choice of q is key to the success of the MCMC approach.

For example if

qθ(x , y) =
1√
2πθ2

exp
(
−1
2θ2 (y − x)2

)
.

the variance of ÎN (f ) is large for values of θ2 that are either too small
or too large.
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Optimise by learning from the past

Sample initial values X0, θ0 ∈ Θ× X.
Iteration i + 1, given θi = θi (X0, . . . ,Xi ) and Xi from the previous
iteration,

1 Sample Xi+1|(X0, . . . ,Xi ) ∼ Pθi (Xi , ·),
2 Compute θi+1 = θi+1(X0, . . . ,Xi+1).
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Issues

Outside the standard MCMC framework: validity?

Could stop adaptation - why bother?
Optimisation itself typically relies on ergodicity!

Criteria guiding the choice of the updates θi?
Framework to “optimise” such criteria.
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The trouble with adaptation: a toy example

MCMC, as opposed to other techniques (such as SMC), are very
sensitive to adaptation.

Consider the following example with two states X = {1, 2}.
And the MC with transition probability

Pθ =

[
Pθ(Xi+1 = 1|Xi = 1) Pθ(Xi+1 = 2|Xi = 1)
Pθ(Xi+1 = 1|Xi = 2) Pθ(Xi+1 = 2|Xi = 2)

]
=

[
θ 1− θ

1− θ θ

]
.

Obviously, with π = (1/2 1/2),

πPθ = π

i.e. π invariant distribution
and converges if θ ∈ Θ = (0, 1).
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More simple facts...

Now assume that θ is a time invariant function of the previous state of
the MC.

That is at iteration i + 1 the transition from Xi to Xi+1 is
parametrised by θ(Xi ).
This still defines a time homogeneous MC with

P̃(Xi+1 = b|Xi = a) = Pθ(a)(Xi+1 = b|Xi = a)

for a, b ∈ X.

The transition matrix is thus

P̃ =

[
θ(1) 1− θ(1)

1− θ(2) θ(2)

]
After some algebra... the invariant distribution is now

π̃ =

(
1− θ(2)

2− θ(1)− θ(2)
,

1− θ(1)
2− θ(1)− θ(2)

)
6= π .
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Vanishing adaptation

A key idea to recover the properties of π is to make the dependence
of θ(·) on 1 or 2 vanish with the iterations: the algorithm then looks
more and more like a non-adaptive algorithm but is given some time
to adapt,

There is extensive literature which establishes that this is indeed the
case under reasonable conditions.
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Coerced acceptance ratio

Consider now the Random Walk MH algorithm, for simplicity in a
univariate scenario.

Here the proposal distribution is qθ(x , ·) = N (x , exp(θ)) i.e. the
proposed state is a perturbation of the current state.
Let τ(θ) be the acceptance rate of the algorithm at stationarity

τ(θ) :=
¨

X×X
π(x)

(
1∧ π(y)

π(x)

)
qθ(x , y) dxdy .

Relevant theory says that it makes sense to choose θ∗ such that
τ(θ∗) ≈ τ∗ = 0.234.
But in general θ∗ is not known. Therefore it is of interest to have an
algorithm that automatically learns θ∗ by monitoring the acceptance
rate of the algorithm in the long-run.
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Coerced acceptance ratio

Objective: find θ that solves the equation

h(θ) =
¨

X×X
α(x , y)qθ(x , y)π(x)dxdy − τ∗ = 0 ,

here α(x , y) = 1∧ π(y)/π(x).

Suggestion :

Yk+1 ∼ qθk (Xk , ·)

Xk+1 ∼
{

Yk+1 with probability α(Xk ,Yk+1)

Xk otherwise

θk+1 = θk + γk+1 {α(Xk ,Yk+1)− τ∗}

Implicit assumption about monotonicity of τ(θ).
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The AM algorithm

We consider the Metropolis algorithm, here in a multivariate context.

The proposal distribution is N (x , Γ).
As in the scalar case, either too “small” or too “large” a Γ leads to
poor results.
It is shown in [Gelman Roberts Gilks 1995] that in some situations a
good Γ is λΓπ, where

λ = 2.382/nx .
Γπ is the covariance matrix of π, unknown a priori!
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Learning the covariance

Haario & Saksmann & Tamminen 2001 have suggested learning Γπ

“on-line”

At iteration k + 1 of the Metropolis algorithm, given an estimate µk , Γk
constructed from X1, . . . ,Xk :

1 Sample Xk+1 ∼ PSRWM
N (Xk ,λΓk )

.

2 Set γk+1 = 1/(k + 1) and update µk , Γk

µk+1 = (1− γk+1)µk + γk+1Xk+1

= µk + γk+1 (Xk+1 − µk)
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N (Xk ,λΓk )

.

2 Set γk+1 = 1/(k + 1) and update µk , Γk

µk+1 = (1− γk+1)µk + γk+1Xk+1

= µk + γk+1 (Xk+1 − µk)
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Standard form of the iterate

One can rewrite the update for (µk+1, Γk+1) as follows,

µk+1 = µk + γk+1(Xk+1 − µk)

Γk+1 = Γk + γk+1((Xk+1 − µk)(Xk+1 − µk)
T − Γk)

with θk+1 := (µk+1, Γk+1)

θk+1 = θk + γk+1H(θk ,Xk+1)
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Improving on the AM algorithm...

Consider the NSRWM, with proposal distribution N (x , Γ),

In some situations a good Γ is λΓπ, where λ∗ = 2.382/nx [Gelman
Roberts Gilks 1995].

In principle, only requires one to estimate (adapt) Γπ

However in practice, especially if Γi is far from Γπ (say very small) λ∗

is likely to be inappropriate.

It is therefore natural to combine the estimation of these quantities.
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AM algorithm with adaptive scaling

1 Given (µi , Γi ), sample Yi+1 ∼ N (Xi ; µi , exp(λi )× Γi ) and set
Xi+1 = Yi+1 with probability α(Xi ,Yi+1), otherwise Xi+1 = Xi .

2 Update

log(λi+1) = log(λi ) + γi+1[α(Xi ,Yi+1)− α∗]

µi+1 = µi + γi+1(Xi+1 − µi )

Γi+1 = Γi + γi+1[(Xi+1 − µi )(Xi+1 − µi )
T − Γi ] .

There are many possible variations on this theme which can significantly
improve performance [Andrieu & Thoms, 2008]...
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A 50 dimensional target distribution
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Results
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Results
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Link to I-like

Steady state vs. transient,

focus so far has been on steady-state criteria but very little is
understood about the initial behaviour of the algorithm,
new criteria are required and fluid limits could provide an insight and
provide novel criteria,
at initialisation, it may be a good idea to use information that is
immediately available, such as the gradient or curvature, while in the
long term the information gathered with the samples may provide more
robust information and lead to more stable algorithms

Optimising the target distribution,

focus of adaptive methods has been mainly on the proposal mechanism
(rare exceptions with SMC methods, tempering algorithms),
open questions concerning criteria and stability of these algorithms,
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Link to I-like

Optimising the target distribution,

focus of adaptive methods has been mainly on the proposal mechanism
(with the exception of some SMC methods),
open questions concerning criteria and stability of these algorithms,

Why optimise the target distribution?

current numerical methods are perhaps too ambitious,
with ABC methods the boundary between numerical methods and
statistical inference has been blurred,
in the ABC context or when using composite likelihoods in a Bayesian
framework optimising the target distribution is required and there is a
need for automation.
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U-like I-like?

5 PDRAs to be recruited
during 2013,
each position will be for 2
years (with opportunity
for extension to 4 years),
the positions are to be
held at one of the four
universities involved in the
project,
IMPORTANT: we
encourage you to apply
through the FOUR
Universities.
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